MPICORPORATION

Accelerating the Development of High-Speed, mmWave-Frequency Semiconductor Products and Applications

Dr. Andrej Rumiantsev

Director RF Technologies Advanced Semiconductor Test Division

© MPI Corporation 2024. All Rights Reserved.

Introduction: Instrumentation Evolution

- Modern Systems and Integration
- Automated Test over Multiple Temperatures
- Conclusion

Instrumentation → Communication Enablers

On the Road to 6G: Drivers, Challenges, and Enabling Technologies, A Fraunhofer 6G white paper, Fraunhofer, Nov. 2021, 15pp.

MPICORPORATION

Ready for The Test[™]

1nc1ze 10-Year Anniversary, A.Rumiantsev

1990s: Single-Sweep mmW System

Enabled development of accurate device models for mmW applications

A. Rumiantsev and N. Ridler, "VNA calibration," IEEE Microwave Mag., vol. 9, no. 3, pp. 86-99, 2008, doi: doi:10.1109/MMM.2008.919925.

R. F. Scholz, F. Korndorfer, B. Senapati, and A. Rumiantsev, "Advanced technique for broadband on-wafer RF device characterization," in *ARFTG Microwave Measurements Conference-Spring*, 63rd, 2004, pp. 83-90.

2000s: Broadband Compact System

Exp.: Agilent PNA N5227A 110 GHz

- Enabled Integration of other instrumentation
 - mmWave Load-Pull
 - RF Noise
- Differential wafer-level mmW measurements became possible
- Boosted development of the Largesignal device models
 - Complex IC development
 - Differential mmW circuits

M. Camp, "RFID - Technologie: Funktion und Einsatz," University of Hannover/Smarter Devices.

Introduction: Instrumentation Evolution

- Modern Systems and Integration
- Automated Test over Multiple Temperatures
- Conclusion

2017: Size, Performance, Complexity

- 900 Hz...120 GHz band, accuracy, dynamic range, speed, calibrated power control, ...
- A "software-defined instrument": Integration of the elements of Spectrum Analyzers, Noise Figure Analyzers, Signal Generators, Pulse Generators
- Large-signal, Non-linear characterization, time-domain waveforms, modulated waveforms, mmW vectorial Load Pull, ...

Differential PNA-X System Integration on MPI's TS3500-SE System

- DUT ShieldEnvironment[™] (SE)
- Over-temperature differential mmW IC characterization
 - e.g. automotive IC in the range of -40°C to +175°C
- EMI, light-tight environment
- Easy re-configurable from 67 GHz to the full-sweep DC...120 GHz differential characterization

Integration on the Probe System South Port

- Enables new-class of characterization
- Magic-T not longer required*

T. Jyo et al., "A DC to 194-GHz Distributed Mixer in 250-nm InP DHBT Technology," 2020 IEEE/MTT-S International Microwave Symposium (IMS), 2020, pp. 771-774.

MPICORPORATION

Ready for The Test[™]

Confidential: D

Broadband 70 kHz-220 GHz Single-Sweep VNA

J. Martens and T. Roberts, "Broadband 220 GHz network analysis: structures and performance," 94th ARFTG Microwave Measurement Conference Digest, San Antonio, TX, 26-29 January, 2020.

MPICORPORATION

1nc1ze 10-Year Anniversary, A.Rumiantsev

Probe Interface with 220 GHz Module: MPI's TITAN[™] T220A Probe

A. Rumiantsev, et al, Calibration, Repeatability and Related Characteristics of On-wafer, Broadband 70 kHz-220 GHz Single-Sweep Measurements, ARFTG-95th

MPICORPORATION

Inclze 10-Year Anniversary, A.Rumiantsev

Enabling Differential Broadband Characterization: DC ... 220 GHz

Anritsu ME7838G4 Single Sweep 70 kHz – 220 GHz

MPI's TITAN[™] Differential Probes T220D-GSGSG

Industry-Record Measurements of a Broadband mmWave Driver Circuit

A. Rumiantsev, et al, A Differential Broadband Single-Sweep 70 kHz-220 GHz Wafer-Level System: First Calibration and Measurement Characteristics, ARFTG-100

Introduction: Instrumentation Evolution

Modern Systems and Integration

Automated Test over Multiple Temperatures

Conclusion

Device Characterization for PDK Challenges Increase

- Wide temperature range:
 - -40, -10, +27, +75, +125, (trend: +175°C)
- "Long-Term Measurements" LTM
 - S-parameters sweep for multiple V bias points
 - Different devices and geometries
- Chuck (temperature source) stays in the same location for long time
 - Uneven temperature distribution across the probe platen and the probe arms
 - Thermal stress causes mechanical drift
 - Probes drift and measurement results fail

Two Main Problems and MPI's Solution

- How to minimize the mechanical drift?
 - Less to compensate
 - Faster time to data
 - More accurate data
- How to minimize the electrical drift?
 - Reduce time outside of the temperature source
- MPI solutions and vision: ATMT[™] Automated Test over Multiple Temperatures
 - Innovative temperature stable hardware
 - Innovative probe adjustment methods with SENTIO[®] prober software
 - On-wafer calibration with QAlibria[®] calibration software

MPI's ATMT[™] Automated Test over Multiple Temperatures

Hardware System Configuration: Example for Two-Port RF

SmartCarrier[™] Compensates Probe Drift in X, Y, and Z

MPICORPORATION

1NC1Ze 10-Year Anniversary, A.Rumiantsev

Confidential: D

Broadband Single-Sweep over Temperature Characterization

IPICORPORATION READY FOR THE TEST

Groundbreaking Achievements in Over-Temperature mmW Broadband Characterization of Semiconductor Devices

As semiconductor technology continues to push boundaries, the demand for accurate and reliable over-temperature characterization techniques becomes paramount. In this technical paper, we delve into the challenges to over-temperature characterization and present innovative solutions that address these challenges. Leveraging the capabilities of Anrisus VectorStar MFR3836 70 Hz-20 GHz broadband VMA, we have developed cuttingedge hardware and software solutions for on-wafer broadband characterization [1]. This paper showsases our industry-first 220 GHz TIIAM* Probe and It highlights the capabilities of SENIU® and Qulbina[®] prober control and calibration software, respectively. The integrated solution enabled automated on-wafer system calibration with NIST multiline TR1 and MPIST MRR calibration and precise broadband device characterization over a wide range of temperatures. Through detailed examples of InP HBI device under test ([DUT] characteristics, we demostrate the deficiences and reliability of our solutions.

Fig. 1: Anritsu VectorStar ME7838G 70 kHz-220 GHz broadband VNA integrated with the MPA TS3500-SE system.

APPLICATION NOTE - QMS-C-AS-209-01, 07-2023 (0 MPI Corporation 2023 - Data subject to change without further notice.

DUT characteristics at -40C, +25C, +50C and +125C corrected by on-wafer mTRL

Refer to: https://www.mpi-corporation.com/ast/technical-library/

Conclusion

- Progress in instrumentation enabled the development of the next-generation highly-integrated circuits and system
- Innovative integration solutions for wafer-level characterization without compromising the instrument performance
- Software and system automation solutions for the overtemperature characterization accelerated time-to-data for the next-generation products for 5G and 6G Application Research

Thank You.

MPICORPORATION

© MPI Corporation 2024. All Rights Reserved.