GlobalFoundries[™]

RFSOI : How did we get here and where are we headed?

Julio Costa, PhD Vice President, RF Technology and Innovation Julio.Costa@globalfoundries.com

4/15/2024

RFSOI Transistor Stacking Concept

• The need for high resistivity silicon substrates was realized very early. Without HiRES silicon substrates at low cost, RFSOI would never have succeeded!

Freq (Hz)

Chronology of RFSOI Technology Development

• Critical technology breakthroughs allowed RFSOI to be omnipresent in today's handsets

1995

- <u>SIMOX</u> substrates introduced
- 50% speed/power improvement over bulk
- RD -> production

- Demonstration of fully integrated switches / RFIC / controllers
- Performance limited by lack of low-cost High Res silicon substrate
- SIMOX yields problematic for large volume product

 <u>SmartCut</u> process dramatically improves yield and drives digital volume

- Low Cost <u>1000 Ohm-cm</u> silicon substrates introduced
- RFSOI foundry
 development starts

Early 2000's

Chronology of RFSOI Technology Development

Critical technology breakthroughs allowed RFSOI to be omnipresent in today's handsets

- Silicon foundries offer RFSOI technologies
- Rapid proliferation of design groups worldwide
- Linearity still limited by silicon substrate surface interface effects

- Two distinct surface treatment approaches nearly eliminate substrate surface effects:
 - Handle Wafer
 - Treatments
 - Trap Rich Interface
 Layer

- >2B US\$ RFSOI market
- Wafer Capacity > 1Million WPY
- High performance switches and Tuners
- Participation in 100% of 4G /5G handsets and devices

The modern RFSOI Switch Transistor

- PDSOI (Partially Depleted SOI) channels for optimal body control at high VRMS voltages
- Gate lengths Lg < 120nm
- Epi thickness < 1000A
- Air Gap technology to reduce COFF
- Combination of lithography layers to optimize performance and cost.

Integration of Passive Devices

- RF integration of passives is essential for reduced overall system cost
- Precision Passive devices account for more than 60% area and cost
- Inductors/transformer metrics are critical \rightarrow Limit the overall circuit performance

5 GHz PA¹

1.8 GHz VCO²

5 GHz LNA¹

1- http://www.chipworks.com/about-chipworks/overview/blog/apple-iphone-5-the-rf/

2 - https://buffy.eecs.berkeley.edu/PHP/resabs/resabs.php?f_year=2004&f_submit=one&f_absid=100326

9SW Technology: GF RFSOI Evolution

Over 1 million RFSOI wafers shipped

Continuous enhancements in **performance**, **integration**, **area** and **cost**.

RFSOI Antenna Tuners

• Improve Antenna Efficiency for the plethora of bands in mobile handset = battery usage efficiency!

GlobalFoundries © 2022 All Rights Reserved

Cellular RF Front End architecture evolution

Increased RFSOI content due to the complexity of 5G mobile handsets

- Max #bands: 25
- Max #antenna: 4
- Carrier aggregation & 4x4 MIMO
- RFFE Si Area: 30-40 mm²

- Max #bands: >40
- Max # Antenna: >8
- 4G-5G coexistence and higher frequency bands : Stringent SW loss, isolation, linearity, LNA performance
- RFFE Si area: >80 mm²

6G will have more #bands, higher carrier frequencies – need for technology differentiation for performance and battery power

How many cellular bands need to be supported in a premier tier 5G phone today (2023)?

Congested licensed bands below 6GHz – motivation for higher carrier frequencies

Higher Frequency band --> Higher contiguous spectrum bandwidth --> Higher data rate

Revolution of mobile communication technology

Mobile data volume and speed to increase >10X in 10 years.

Mobile Speeds and Technology Evolution

New technology generations occur around every decade with more capabilities

Source: https://www.eetimes.eu/rf-soi-engineered-substrates-at-the-heart-of-modern-rf-mmwave-front-ends

Source: Cisco Annual Internet Report, 2018–2023

45nm RF-SOI SiGe BiCMOS Development

- First RFSOI-based BiCMOS demonstration with SiGe NPN HBTs having fT/fMAX 388/600 GHz.
- 45nm SOI CMOS digital & RF FET baseline process
- High resistivity SOI substrate and high-Q passives
- Combines best of SOI and HBT for >100GHz phased arrays
 - SOI NFET for superior LNA, switch, phase shifters, passive mixer
 - SiGe HBT for higher PA Pout & PAE and lower phase noise VCO

SiGe +SOI

Integration!

Where are we headed next in RFSOI?

- 3D System Integration will apply to RFICs for dramatic footprint reduction (IMEC's vision)
- RF components must however simultaneous manage: RF coupling / distortion / heat dissipation

Where are we headed next in RFSOI?

- 3D System Integration will apply to RFICs for dramatic footprint reduction
- RF components must however simultaneous manage: RF coupling / distortion / heat dissipation

3D Heterogeneous Microsystems are multi-layered structures that integrate different materials and components in a compact and vertically stacked fashion

3D-system in package (SiP) concept for the realization of fully autonomous systems

Source: E. Beyne et al, "3D system integration technologies" ICICDT07

Conclusion

- Dramatic increase in mobile data traffic in next decade
- RFSOI-on-HRSI technology readily established in all major cellular 4G/5G platforms
- Substrate treatment technologies closed the gap in performance. Best tradeoff in cost/size/technology compared with other technologies.
- Rapid deployment of RFSOI multi-throw switches and capacitor arrays/tuner products for next generation wireless applications
- RF handset solutions will utilize a number of technologies to dramatically decrease component footprint