
ΟΚΜΕΤΙΟ

Silicon wafers enabling 5G and 6G technologies

Katja Parkkinen Sr. Product Development Engineer

Katja Parkkinen

Sr. Product Development Engineer, R&D at Okmetic

M.Sc. Physics

- With Okmetic since 2019
- Product development of silicon wafers for the RF market
- Okmetic project management in EU & national project consortiums
- Tech expertise from various fields
 prior Okmetic

Outline

- Brief introduction to Okmetic
- Trends in 5G and beyond
- Silicon wafers enabling 5G and 6G technologies

Silicon Wafers Enabling 5G and 6G Technologies, 26 April 2024

OKMETIC

Leading supplier of advanced silicon wafers for RF, MEMS and Power devices

Okmetic

- Established in 1985 as JV of Nokia and Outokumpu
- HQ and production in Finland
- Sales and Tech support worldwide
- Supplier to world's leading RF device manufacturers

Focusing on 150-200 mm wafers:

- Magnetic CZ (MCz), A-MCz[®]
- Very high and very low resistivity
- Customized solutions in volumes
- Bonded SOI with & without Cavities

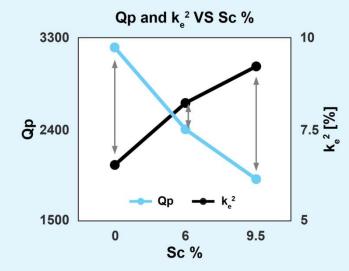
NET SALES in 2022	INVESTMENT for fab expansion	PERSONNEL
146 M€	~400 M€	~ 640

OKMETIC

Fab expansion will more than double the Vantaa site production capacity

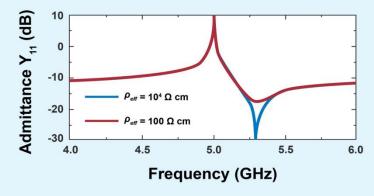
Outline

- Brief introduction to Okmetic
- Trends in 5G and beyond
- Silicon wafers enabling 5G and 6G technologies



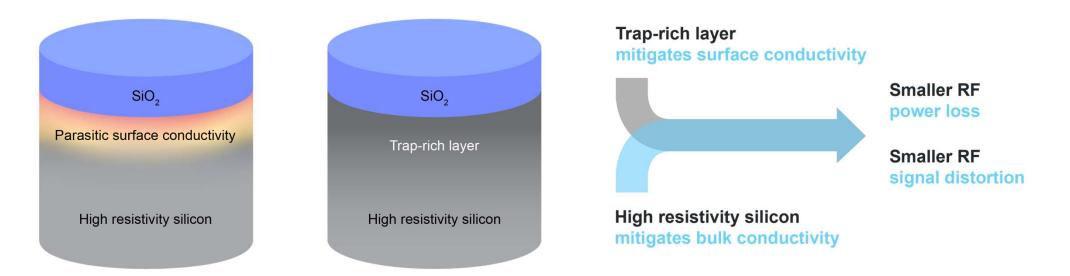
Silicon Wafers Enabling 5G and 6G Technologies, 26 April 2024

Trends and challenges with new bands


- Achieving steep skirts, low insertion losses, and wide bandwidths simultaneously for the new 5G bands poses a significant challenge
 - Wide bandwidth BAW filters with a higher Scdoping in AIScN compromise Qp, insertion loss (IL), and steepness
 - Combining acoustics with LC circuits also degrades filter selectivity
- · Advanced Si wafers help alleviate the trade-offs
 - Substrate losses have a large impact on resonator antiresonance Q. Engineered Ultra High Resistivity wafers facilitate superior device performance.
 - Improvements in losses also at higher frequencies, and with IPDs/combining acoustics with LC

Higher Sc-doping in AIScN degrades Q-factors

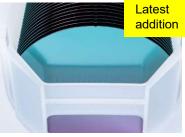
Substrate losses including those from Si substrate impact Qp



L. Gao et al., 2021, doi: 10.1109/IUS52206.2021.9593816

Mitigating substrate-induced losses

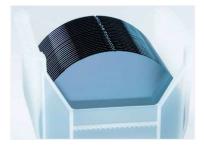
Engineered High Resistivity wafers' dual properties enable superior linearity



RFSi[®] wafer family in 150-200 mm – High Resistivity for RF device needs

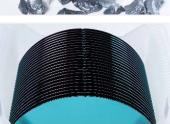
High Resistivity wafers

> Up to >7 kOhm-cm resistivity without trap-rich layer, low loss RF IPD or Integrated RFFE / RFIC substrate


Engineered Ultra High Resistivity wafers

> Over 10 kOhm-cm resistivity and added trap-rich layer, close to zero-loss substrate for RF filter devices

Engineered High Resistivity wafers

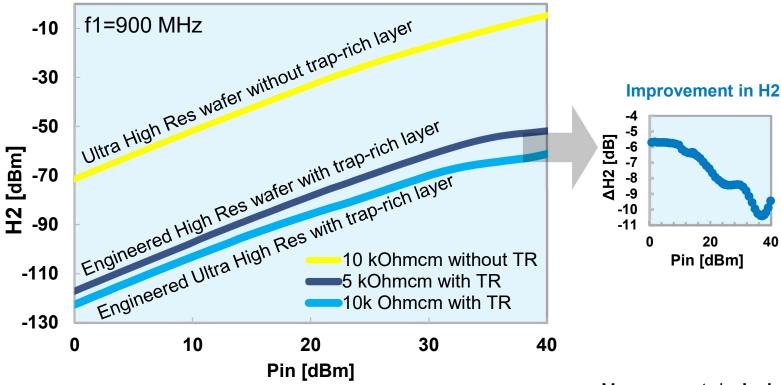

> Up to >7 kOhm-cm resistivity with added trap-rich layer, extremely low loss subtrate for RF filter devices

UF-RFSi® wafers

> Engineered low loss substrate with Up to >7 kOhm-cm resistivity, traprich layer and Ultra Flat properties for e.g. Thin Film SAW

High Resistivity SOI

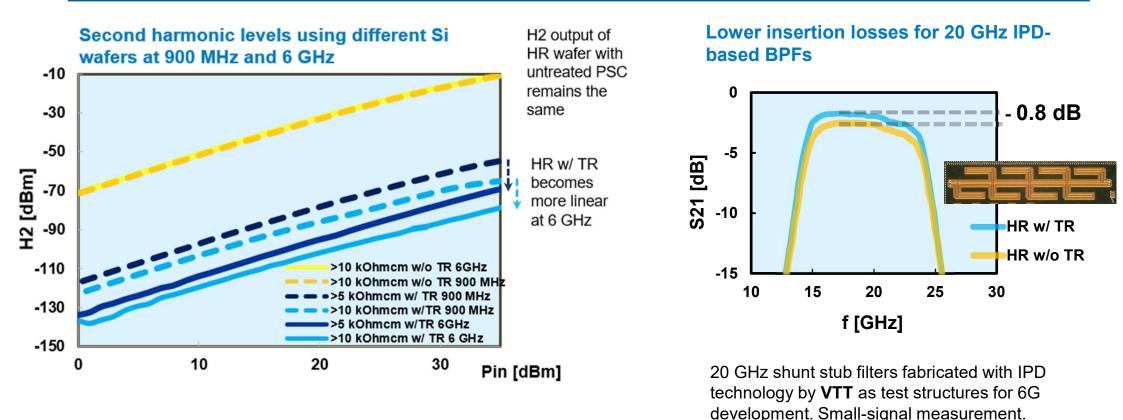
Bonded - BSOI or suspended
 C-SOI[®] low loss structures per
 Customer design, e.g. BAW resonator


RF GaN Substrate wafers

> Typically extra thick <111> MCz wafers GaN-on-Si RF Power device substrate with advanced stress management

Exceptional RF linearity improvement with Okmetic Engineered Ultra High Resistivity wafers

Second harmonic levels using different Si wafers



 Using 10 kOhmcm crystal with TR layer as opposed to 5 kOhmcm, even 10 dB further improvement in linearity can be achieved especially at high powers.

Measurements by Incize. 2 mm length 50 Ω CPW test structures.

10 Silicon Wafers Enabling 5G and 6G Technologies, 26 April 2024

New bands and higher frequencies benefitting from improved linearity and losses

Measurements by Incize. 2 mm length 50 Ω CPW test structures.

Key takeaways

- Linearity targets for RF devices are becoming more ambitious due to the evolution of wider bands, higher frequencies, carrier aggregation and new power standards
- Advanced silicon wafers bring substantial benefits in technical performance and achieving new goals

Thank you

katja.parkkinen@okmetic.com thierry.cocco@okmetic.com

sales.europe@okmetic.com sales.usa@okmetic.com sales.asia@okmetic.com sales.japan@okmetic.com

