

GlobalWafers Co., Ltd. 環球晶圓股份有限公司

Global Family, Global Solutions!

A Dive Into Various Wafer Types for RF Optimal Performance

Bruno Baccus

26/04/2024

Incize 10-year Anniversary Event

θW

RF Applications and Link to Wafer Options

- RF space offers interesting connections between the initial condition (wafers) and the final application
- Wafer characteristics -> RF performance (ex: high frequency, harmonics) -> System integration -> final device (ex: 5G smartphone)
- This is why the initial wafer material, design and characteristics are of specific importance besides usual requirements (doping, flatness...)

RF semiconductor materials

Material	Advantages	Applications	
Silicon (SI)		RF switches Low-power RF applications	
CZ FZ SOI	Si-based devices can be manufactured using mature CMOS technology. Integration: Si allows integration of digital and analog circuits on a single chip	IoT devices Consumer electronics High Frequency CMOS Even higher frequency with SiGe HBT integrated with CMOS	
Gallium Nitride (GaN)		RF power amplifiers (especially in 5G networks) Radar systems Satellite communication	
High breakdown voltage: GaN devices can handle high voltages High electron mobility: GaN transistors are used in power amplifiers for wireless communication		Base stations	
Gallium Arsenide (GaAs)	······································	RF filters LNAs Power amplifiers Switches Phase shifters Oscillators	
	prevalent in RF communication systems.	Antenna tuners	
LT and LN wafer substrate: LiTaO3 (Lithium Tantalate, LT) and	LT and LN wafer substrate:Multi-function crystal material which possess unique optical, piezoelectric and pyroelectric propertiesWi-Fi, 4G, 5G, GPS		
LiNbO3 (Lithium Niobate, LN)	LiNbO3 (Lithium Niobate, LN) Field		
Silicon Carbide (SiC)	extreme temperatures.	High-power RF amplifiers	
Semi-Insulating SiC GaN on SI-SiC	applications.	Harsh environment applications (e.g., aerospace, automotive)	
	Excellent thermal conductivity: SiC dissipates heat efficiently.	Wireless power transfer	

SAS Strategic Layout of Key Areas

3

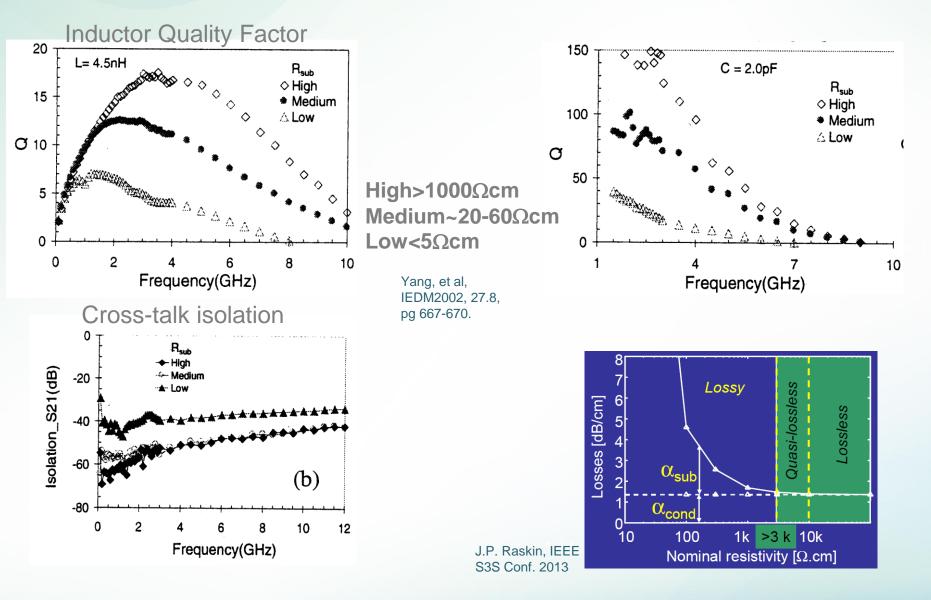
GWC has the world largest wafer product portfolio

	Wafe	er Diameter (mm)		En el como		
	LE150	200	300	End-applications			
Annealed Wafer		~	~	Memory	LCD Driv	ver Ana	log/Logic IC
EPI Wafer (Epitaxial)	~	~	~	Power Device	Automobile	MPU/MCU	CMOS Image Sensor
Polished Wafer	1	~	~	Communication	Power Device	Analog/Logic IC	Memory
Diffused Wafer	~			Automobile	Electricity	2	Aerospace
Non-polished Wafer	~				Discrete D	levice	
FZ Wafer (Float Zone)	~	~		Medical Equipment	Vind Turbine	High Speed F	Rail Automobile
SOI Wafer (Silicon on Insulator)	~	~	~	High Voltage Power	MEMS Sensor	CMOS R	F Device Photonics
SiC Wafer (Silicon Carbide)	~	~		Automobile	High Voltage Power	High Speed R	ail Wind Turbine
GaN/Si, GaN/SiC (Gallium Nitride)	~	~		Solar Inverter	Power Supplies		

Polished Wafers – CZ Silicon

- (100) lightly doped wafers
 - 10's-100's ohm-cm for SiGe technology
 - >1000 ohm-cm for passives (high-Q inductors)
- CZ Crystal Growth
- Less demanding design rules / wafer parameters

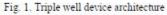
	150mm	200mm	300mm
Diameter	\checkmark	\checkmark	\checkmark

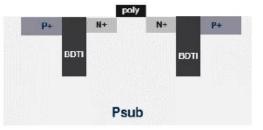

Positive	Cost	Availability
Negative	Thermal	Extra Design
	Donors	

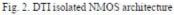
GlobalWafers Co., Ltd.

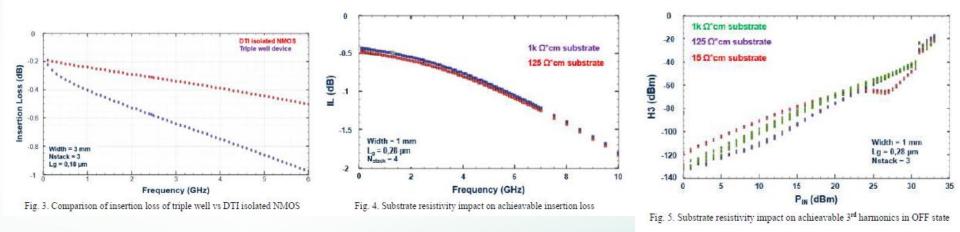
環球晶圓股份有限公司

Example Impacts of Resistivity


High RF and THz – Si-based




IEDM 2022, Paper 11.7 (ST Microelectronics):


- 130nm bulk HiRes SiGe BiCMOS (ft 230GHz / fmax 280GHz) with low Ron-Coff and high power handling for WiFi 6E RF front end module.
- Complementary to RFSOI w/intent is to offer non-SOI RF FEM for cost sensitive 6G applications while improving
 power efficiency and better noise figure.
- RFSOI supports WiFi FEM to 2.5GHz, but SiGe enables WiFi FEM to 6GHz.
- Evaluated 1kohm-cm vs 125ohm-cm substrates and prefer 125ohm-cm as more practical and good enough, less prone to latch-up, and easier to acquire with fewer use challenges.
- Higher parasitic capacitance than SOI (absence of BOX) limits power handling. "RFSOI is king for high end front end module"

HiRes[™] Float Zone Silicon

 $\pm 30 - \pm 50\%$

>1 k Ω cm (max resistivity 50 k Ω cm)

Polished Wafers – FZ Silicon

- (100) or (111) highly doped wafers (>1k ohm.cm, Max 50k ohm.cm)
- FZ Crystal Growth
 - GHz & THz applications
 - RF MEMS switches
 - High-Q inductors and capacitors
 - GHz Transmitter and receiver circuits
 - GHz mixers
 - GHz Power amplifiers

 Radial resistivity variation
 <50 - <60%</td>

 Diameter
 150-200 mm

 Crystal orientation
 <100>, <111>*

 Type and Dopant
 N, P: Undoped

 Oxygen and Carbon concentration
 <10¹⁶ cm⁻³

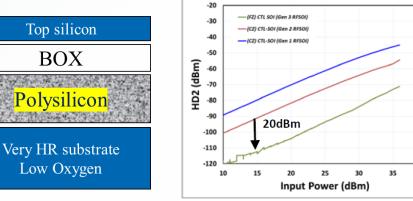
 Wafer thickness
 >200-1300 µm depending on wafer diameter

 Wafer surface finish
 Single side polished and double side polished

Growth method Resistivity

Resistivity tolerance

- Low loss microstrip transmission lines and coplanar waveguides
- Micromachined thin Film Bulk Acoustic Resonators (FBAR)


	150mm	200mm	300mm
Diameter	\checkmark	\checkmark	
Positive	Very High Resistivity		
Negative	Cost	Not available on 3	300mm

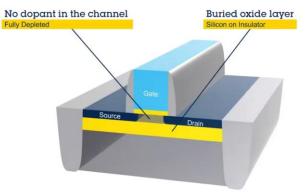
GlobalWafers Co., Ltd. 環球晶圓股份有限公司

SOI for RF

- Hi-Resistivity handles
- CTL Charge Trap Layer
 - Switches
 - Power Amplifier

Typical RFSOI wafer

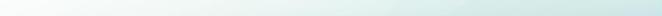
HD2 vs Pin for FZ CTLSOI wafers compared to CZ CTL SOI wafers


Diameter	\checkmark	\checkmark

Positive	Harmonics Performance	Availability	Top wafer reuse
Negative	Tuning of thermal cycles (Thermal donors, slip lines)	Cost	

SOI for RF - FDSOI

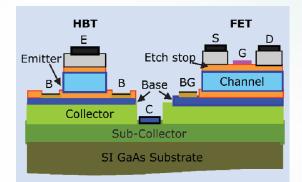
- Very thin Box and Top layers
 - mmWave Front-End
 - SatCom
 - Radar
 - Automotive



Source: ST Microelectronics

	150mm	200mm	300mm
Diameter			\checkmark

Positive	Digital / Mixed Signal	Back Bias	Low Power
	Integration	Capability	Consumption


Negative	Design Complexity ?	Cost
	Challenging wafer	
	specification	

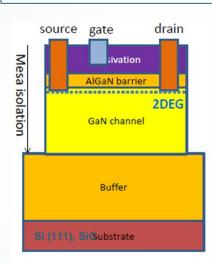
GaAs for RF

- For RF typically bulk GaAs semiinsulating crystal with MOCVD grown III-V epi stack
- There has been research for GaAs on Si

	150mm	200	mm	300mm
Diameter	\checkmark			
Positive	Output Pow Frequency	Output Power Frequency		e
Negative	Integration		Cost	

GaN for RF

- Si handle High Resistivity (or Semi-Insulating SiC substrate)
- GaN Growth
- GaN on SI-SiC is well established for defense and high temperature applications.
- GaN on HiRes Si(111) is competing in consumer and cost sensitive communication markets


	150mm	200mm	300mm
Diameter	\checkmark	\checkmark	
Positive	Output Pow	ver Freq	uency
Negative	Integration	Cost	

GaN Epi on Si(111): Wafer Requirements

MOCVD growth: 150/200mm capability at GWC

Silicon thickness used to offset Stress / Bow from ~ 50% Thermal Expansion Mismatch. 150mm~1mm, 200mm ~ 1.15mm

AlGaN + Passivation Gallium Nitride

Aluminum Gallium Nitride

Aluminum Nitride

(111) Silicon 150mm, 200mm, 300mm

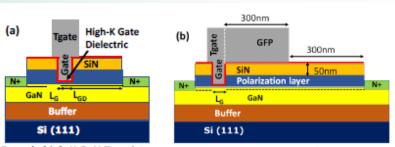
(111) orientation for better symmetry match to h-GaN

~ 20% lattice mismatch between Si and GaN...high dislocation density

Control of slicing orientation target and tolerance, varies from spec to spec Edge profile to prevent Ga contact to Si and reduce film cracks, reduce damage from susceptor contact, and for optimum shape after backgrind

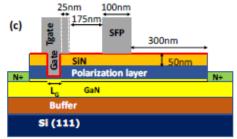
Increase wafer slip resistance through doping level, oxygen, co-doping with N

P+, P++ for Power GaN provides better shape control


High resistivity > ~3kohm-cm for RF GaN/Si

Semi-insulating SiC for RF GaN/SiC

Power – RF GaN on Si



IEDM 2022 Paper 35.1 (Intel): 300mm GaN on Si(111) HRS for high performance RF power. Record high Fmax of 680GHz demonstrated for 30nm channel length enhancement mode transistor. Field plating optimized to extend breakdown voltage and reliability from 12V to 40V range operation. Power FOM (Ron*Qgg) 30X better than Si-LDMOS and 20x better than e-mode p-GaN HEMT.

E-mode high-K GaN Transistor

E-mode high-K GaN Transistor (Gate Field-Plate)

E-mode high-K GaN Transistor (Source Field-Plate)

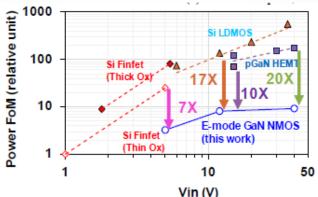


Fig.11 benchmarks the power FoM of the e-mode GaN NMOS of this work, showing ~20X better performance than pGaN HEMT and ~30X better than Si LDMOS at 40V; 10-17X better than Si LDMOS and pGaN HEMT at 12-15V, and 7X better than Si Finfet at 5V.

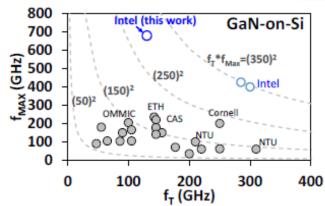


Fig.16 benchmarks the f_T/f_{MAX} of this work with data points reported [13] for GaN-on-Si transistors, showing record f_{MAX} =680GHz with f_T =130GHz, shown in Fig.12. Intel data points are the only ones from 300mm GaN-on-Si(111) process.

GlobalWafers Co., Ltd. 環球晶圓股份有限公司

Thank You

Learn More on Our Website